Weak antilocalization in epitaxial graphene: evidence for chiral electrons.

نویسندگان

  • Xiaosong Wu
  • Xuebin Li
  • Zhimin Song
  • Claire Berger
  • Walt A de Heer
چکیده

Transport in ultrathin graphite grown on silicon carbide is dominated by the electron-doped epitaxial layer at the interface. Weak antilocalization in 2D samples manifests itself as a broad cusplike depression in the longitudinal resistance for magnetic fields 10 mT<B<5 T. An extremely sharp weak-localization resistance peak at B=0 is also observed. These features quantitatively agree with graphene weak-(anti)localization theory implying the chiral electronic character of the samples. Scattering contributions from the trapped charges in the substrate and from trigonal warping due to the graphite layer on top are tentatively identified. The Shubnikov-de Haas oscillations are remarkably small and show an anomalous Berry's phase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak-localization magnetoresistance and valley symmetry in graphene.

Because of the chiral nature of electrons in a monolayer of graphite (graphene) one can expect weak antilocalization and a positive weak-field magnetoresistance in it. However, trigonal warping (which breaks p-->-p symmetry of the Fermi line in each valley) suppresses antilocalization, while intervalley scattering due to atomically sharp scatterers in a realistic graphene sheet or by edges in a...

متن کامل

Transition between electron localization and antilocalization in graphene.

We show that quantum interference in graphene can result in antilocalization of charge carriers--an increase of the conductance, which is detected by a negative magnetoconductance. We demonstrate that depending on experimental conditions one can observe either weak localization or antilocalization of carriers in graphene. A transition from localization to antilocalization occurs when the carrie...

متن کامل

z→-z symmetry of spin-orbit coupling and weak localization in graphene.

We show that the influence of spin-orbit (SO) coupling on the weak-localization effect for electrons in graphene depends on the lack or presence of z→-z symmetry in the system. While, for z→-z asymmetric SO coupling, disordered graphene should display a weak antilocalization behavior at lowest temperature, z→-z symmetric coupling leads to an effective saturation of decoherence time which can be...

متن کامل

Staying or going? Chirality decides!

When an electronic device is cooled to low temperature, the wavelike nature of charge carriers becomes detectable through quantum interference effects. One example is weak localization, a small decrease in the conductivity of a disordered conductor [1, 2]. Since interference depends on the quantum-mechanical phase of electronic waves, the experimental signature of weak localization has been use...

متن کامل

Weak localization in monolayer and bilayer graphene

We describe the weak localization correction to conductivity in ultrathin graphene films, taking into account disorder scattering and the influence of trigonal warping of the Fermi surface. A possible manifestation of the chiral nature of electrons in the localization properties is hampered by trigonal warping, resulting in a suppression of the weak anti-localization effect in monolayer graphen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 98 13  شماره 

صفحات  -

تاریخ انتشار 2007